Let I	$D = \{1, 3, 4, 9, 15\}$ be the domain of both predicates.
[a]	Find the truth set of $P(x)$. You do NOT need to justify your answer.
	[1,3,15]
[b]	Find the truth set of $Q(x)$. You do NOT need to justify your answer.
	[{1,3,9,15}, 2]
[c]	Is the statement $P(x) \Rightarrow Q(x)$ true or false? Explain very briefly.
	YES. TRUTH SET OF P(X) S TRUTH SET OF Q(X)
	SCOPE. /2 PTS
Your	e the following statement informally. Avoid ambiguous language. SCORE:/ 3 PTS r answer should NOT use the phrases "for all", "for every", "for each", "for any", "such that", "there exists".
	$\exists r \in P : \forall t \in E, \sim V(r, t)$ where $P = \text{set of all people}, E = \text{set of all countries in Europe},$ and $V(r, t) = \text{``r has visited t''}$
	SOMEONE HAS NEVER VISITED EUROPE
Cons	sider the statement "All integers between 61 and 67 are composite". SCORE: / 6 PTS
[a]	Write the statement symbolically, using <u>TWO</u> predicates. <u>State clearly the domain and predicates.</u>
(D.P(x) = "x is BETWEEN 61 AND 67"
(E) Q(x) = " x 15 COMPOSITE",
	DYXE Z, P(x) -> Q(x), HAVE A VARIABLE
[b]	Write the negation of the statement symbolically, using the domain and predicates from [a].
	O Jxe Z: P(x) ~~Q(x) O
[c]	Write the inverse of the statement symbolically, using the domain and predicates from [a].

SCORE: ____/ 6 PTS

CONTINUED →

Let P(x) be the predicate " $\frac{30}{x}$ is an integer".

Let Q(x) be the predicate "x is odd".

Let P	be the set of all people, and let W be the set of all women.	SCORE: / 6 PTS
[a]	Write the following statement symbolically, using TWO quantifiers and TWO variables. State clearly the	ne predicate.
	DYXEP, FYEW: M(x,y) (1) PUNC	DICATE MUST E 2 VANCIABLES TEXT
[b]	Write the negation of the statement symbolically.	MATCH
(D. FxeP: Nyew, ~M(x,y) (E)	
Conside	r the argument	SCORE:/7 PTS
	All perfect numbers are even. 37 is not perfect. Therefore, 37 is not even.	
	Write the argument symbolically, using \underline{TWO} predicates. State clearly the domain and predicates. $P(x) = "x \text{ is perfect"} \qquad \forall x \in \mathbb{R}, P(x) \rightarrow Q(x) = "x \text{ is even"} \qquad P(37) \oplus Q(37) $	Q(x) (2)
[b]	Is the argument an example of Universal Instantiation (UI), Universal Modus Ponens (UMP), Universal Muniversal Transitivity (UT), Converse Error (CE), Inverse Error (IE) or none of the above (NA)?	1odus Tollens (UMT),
	I E	
Let $P(x)$	= $\{-2, 1, 3\}$ and $B = \{-2, 0, 2\}$. (x, y) be the predicate " $x^2 + y$ is a multiple of 3" with domain $A \times B$ (ie. $x \in A$ and $y \in B$). The if the statement " $\exists y \in B : \forall x \in A, P(x, y)$ " is true or false. (your answer as shown in lecture. Use as few examples/counterexamples as you need. (3) $\exists x \in A \in A$ (1) $\exists x \in A \in A$ (2) $\exists x \in A \in A$ (3) $\exists x \in A \in A \in A$ (4) $\exists x \in A \in A \in A \in A$ (5) $\exists x \in A \in A \in A \in A \in A \in A \in A$ (6) $\exists x \in A \in$	score:/7 PTS SE eg. x=-2
	your answer as shown in lecture. Use as few examples/counterexamples as you need. $y = -2$ y	SE eg. $x=-2$ 1SE eg. $x=3$
)	THE STATEMENT IS FALSE,	